A Two-phase Model of Air Shock Wave Induced by Rock-fall in Closed Goaf

نویسندگان

  • Fengyu Ren
  • Yang Liu
  • Jianli Cao
  • Rongxing He
  • Yuan Xu
  • Xi You
  • Yanjun Zhou
چکیده

In this paper, a two-phase model of air shock wave induced by rock-fall was described. The model was made up of the uniform motion phase (velocity was close to 0 m·s-1) and the acceleration movement phase. The uniform motion phase was determined by experience, meanwhile the acceleration movement phase was derived by the theoretical analysis.A series of experiments were performed to verify the twophase model and obtained the law of the uniform motion phase. The acceleration movement phase was taking a larger portion when height of rock-fall was higher with the observations. Experimental results of different falling heights showed good agreements with theoretical analysis values. Computational fluid dynamics (CFD) numerical simulation had been carried out to study the variation velocity with different falling height. The two-phase model could provide a reference and basis for estimating the air shock waves' velocity and designing the protective measures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Semi-empirical Model of Air Waves Induced by Falling Rock in a Closed Goaf

In this paper, a semi-empirical model of air waves induced by falling rock is described. The model is composed of a uniform motion phase (velocity close to 0 m·s-1) and an acceleration movement phase. The uniform motion phase was determined based on experimentally and the acceleration movement phase was derived by theoretical analysis. A series of experiments were performed to verify the semi-e...

متن کامل

Numerical Investigation of Circular Plates Deformation under Air Blast Wave

In the current research the maximum deflection of circular plates made of AA5010 and AA1100 alloys under blast load was investigated. Shock waves were produced by exploding a spherical charge in different distances from the center of plates. The ABAQUS software uses conwep equation for blast loading analysis. It was found the results of these simulations have about 30% to 40% inaccuracy in comp...

متن کامل

Numerical analysis of energy transmission through discontinuities and fillings in Kangir Dam

A considerable amount of energy is released in the form of shock wave from explosive charge detonation. Shock wave energy is responsible for the creation of crushing and fracture zone around the blast hole. The rest of the shock wave energy is transferred to rock mass as ground vibration. Ground vibration is conveyed to the adjacent structures by body and surface waves. Geological structures li...

متن کامل

Oscillation Control of Aircraft Shock Absorber Subsystem Using Intelligent Active Performance and Optimized Classical Techniques Under Sine Wave Runway Excitation (TECHNICAL NOTE)

This paper describes third aircraft model with 2 degrees of freedom. The aim of this study is to develop a mathematical model for investigation of adoptable landing gear vibration behavior and to design Proportional Integration Derivative (PID) classical techniques for control of active hydraulic nonlinear actuator. The parameters of controller and suspension system are adjusted according to be...

متن کامل

Rayleigh Surface Wave Propagation in Transversely Isotropic Medium with Three-Phase-Lag Model

The present paper is dealing with the propagation of Rayleigh surface waves in a homogeneous transversely isotropic medium .This thermo-dynamical analysis is carried out in the context of three-phase-lags thermoelasticity model. Three phase lag model is very much useful in the problems of nuclear boiling, exothermic catalytic reactions, phonon-electron interactions, phonon scattering etc. The n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016